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Previously reported results from determinations of the first derivative of the elastic contribution to the free 
energy density function for dicumyl peroxide crosslinked natural rubber were analysed within the context 
of the Gaylord-Douglas 'localization model' of rubber elasticity. It was found that the dry state properties 
of the rubbers are well described by the localization model and that the non-classical contribution to 
rubber elasticity arising from the confinement of network chains by surrounding chains varies according 
to the theory. Specifically, a single measure of localization G e is required to fit the experimental results 
and the variation of this parameter follows the predictions of the theory, namely, Ge is approximately equal 
to the rubbery plateau modulus at the limit of zero crosslinking and subsequently follows a linear dependence 
on crosslink density. The only other parameter in the model, the prefactor to a classical term, was set to 
the classical phantom value assuming a tetrafunctional network and assuming that each dicumyl peroxide 
molecule decomposed to form one crosslink. 
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I N T R O D U C T I O N  

Most molecular theories of rubber elasticity are 
formulated in such a way that the elastic contribution to 
the free energy can be represented as a separable function 
in the principle deformations 21, 22 and 2 a. Such 
separable strain energy functions are special cases of the 
Valanis-Landel (VL) 1 function familiar in continuum 
mechanics. 

In recent work 2-5 we carried out torsional measure- 
ments on dicumyl peroxide crosslinked natural rubber 
in order to evaluate the VL function for a series of 
networks of differing crosslink density, to compare their 
responses in the dry and swollen states, and to evaluate 
the Frenkel6-Flory-Rehner  7 (FFR) hypothesis that the 
elastic and mixing contributions to the free energy are 
simply additive. By using the VL function to describe the 
strain energy of the rubber, we were able to strictly avoid 
the use of a molecular model in our evaluation of the 
FFR hypothesis. 

Here, we take the approach of using the previously 
obtained dry state data, from which we obtained the first 
derivative of the free energy function with respect to the 
deformation 4, to evaluate the Gaylord-Douglas  
'localization model' of rubber elasticity s'9. According to 
this model there is a substantial non-classical contribu- 
tion to the free energy density of the network which is 
due to the entanglement interaction and the finite volume 
of the network chains, i.e. local confinement of the chains. 
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There are two salient results which we obtain. First, the 
ability of the localization model to describe the data using 
just one adjustable parameter (the confinement modulus 
Ge) is very good. Second, we find that upon fixing the 
classical term in the model to its expected value, obtained 
by assuming one tetrafunctional crosslink per decom- 
posed peroxide molecule, that the non-classical confine- 
ment term behaves as expected from the theory 9, i.e. the 
confinement term is a linear function of the crosslink 
density and its value extrapolated to zero crosslink 
density is equal to the plateau modulus of the 
uncrosslinked polymer. 

In this paper we recall the model, describe the 
previously obtained results, compare the theory with 
experimental results, and finally discuss the physical 
significance of the parameters obtained from fitting the 
model tO the data. 

LOCALIZATION M O D E L  

Molecular models of polymeric network elasticity have 
concentrated on certain minimal aspects of the rubber 
networks. The classical theories of Wall and Flory 1°'11, 
James and Guth 12, and others focused primarily on the 
property of network connectivity. Non-classical theories, 
such as that of Dean and Edwards 13 have emphasized 
the 'topological interaction' associated with the 'uncross- 
ability' of network chains. DiMarzio 14-x6 and Jackson 
et  al.  ~7'18 attempted to derive more realistic models by 
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including the physical constraint of finite network chain 
volume, i.e. packing effects 16. 

Gaylord and Douglas incorporated these minimal 
features of a crosslinked network (network connectivity, 
entanglement interaction, finite chain volume) into a 
simple theory of rubber elasticity which they call the 
'localization model'. In this model the change in the 
network free energy with deformation is given byS'9: 

3 3 
AF(elast ic) /V o = (Q/2) ~ (22 - 1) + G~ ~ (2 , -  1) 

/=1 /=1 (1) 

where AF(elastic) is the elastic contribution to the free 
energy of the network, V o is the volume of the rubber 
sample and the 2, are the principal extension ratios 
('stretches'). The moduli G¢ and G e are defined below. 

The first term in equation (1) is the classical network 
chain connectivity contribution and the second term is 
the 'entanglement' contribution. Equation (1) assumes a 
constant volume (incompressibility) deformation. 

In previous comparisons of the localization model with 
experimental results, G¢ and Ge were used as adjustable 
parameters and good agreement was obtained with 
uniaxial extension data s. The model, however, gives 
specific molecular interpretations to the connectivity and 
entanglement parameters G~ and Ge, which have not yet. 
been explored in detail. Here we expand the testing of 
the localization model by varying the crosslink density 
and observing how the predicted dependences of G~ and 
Ge compare with the experimental behaviour. Next we 
briefly review the meaning of G~ and Ge in the localization 
model. 

In the limit of no entanglement interaction (G e = 0), 
the Gaylord-Douglas model reduces to classical rubber 
elasticity theory. Although various predictions have been 
made for the magnitude of the shear modulus Gc, all of 
the classical models indicate that it is proportional to the 
crosslink density v as: 

G e = CovkT (2) 

where Co is a constant, k is the Boltzmann constant and 
T is the absolute temperature. 

For the ideal (end-linked) tetrafunctional network 
Wall and Flory and TreloaP 9-21 found that C o = 1, while 
James and Guth, Dusier and Staverman, and Edwards 
obtained ~9'z/C o = 0.5. Evidence has been reported in the 
literature supporting both values, and it is recognized 
that in the normal situation imperfect networks which 
may contain dangling ends and various inhomogeneities 
are studied. Furthermore, experimental evidence that 
network behaviour is non-ideal and that terms other than 
the classical term need to be included in the free energy 
function makes the disputes concerning the magnitude 
of Co somewhat moot. In the experimental comparisons 
below we will take C o = 0.5 as the most 'reasonable' 
estimate lacking perfect information about the network 
structure. We will also consider values of Co = 1 and 0.25 
to bound the possible values which C o might have. We 
will find that the actual value of C o chosen in this range, 
while affecting the agreement between theory and 
experiment, does not significantly affect the conclusions 
of the paper. This insensitivity reflects the predominance 
of the non-classical contribution to the observed 
elasticity. 

The entanglement parameter G e of the localization 
model accounts for the restriction of the configurations 

of a network chain by surrounding network chains. The 
basic effect of having a chain 'hemmed in' by its 
surroundings is to reduce the average number of chain 
degrees of freedom. The physical picture of the network 
chain confined to a random tube, defined by the 
interaction of the network chain with surrounding chains, 
is similar to Edwards' original formulation of the tube 
model 22. Gaylord and Douglas s'9 take the model further 
by arguing that the tube radius reflects the hard core 
cross-sectional radius of the polymer and thus the tube 
volume is of the order of the chain molecular volume. 
Since the chain molecular volume is invariant to a 
macroscopic deformation Gaylord and Douglas deduce 
that the tube volume should also be an invariant. From 
this constraint they estimate the variation of the tube 
confinement parameters as a function of deformation s. 
The dependence of the confinement parameters on 
deformation is the origin of the (2, - 1) terms in equation 
(1). 

A recent calculation 9 by Gaylord and Douglas results 
in G e having two contributions: 

Ge = y(vkT)  + G* (3) 

where G~ is the crosslink independent plateau modulus 
of the polymer melt and 7 is a constant*. 

Another implication of the localization model is a 
rough inverse relation between the melt plateau modulus 
G* and the chain cross-sectional area a. This inverse 
relation also implies that the melt entanglement 
molecular weight Me is proportional to the chain 
cross-sectional area. There are some experimental data 
which support these relations 23"24, i.e. G~ ~_ 1/a and 
M e ~ a. However, further measurements are necessary to 
test the quantitative validity of these relations. The 
observation of an inverse relation between G~ and a 
is important because it supports the picture of packing 
dominated 'localization interactions' which are the 
conceptual basis of the localization model. 

In the following we describe the methods of analysis 
and our comparison of torsional data for crosslinked 
natural rubber with the Gaylord-Douglas model 
predictions. 

METHODS OF ANALYSIS 

According to the VL 1 phenomenological approach to 
rubber elasticity the elastic strain energy density function, 
W(21) = AF(elastic)/Vo, is a separable function of the 
principal stretches 2i: 

W(;~i) = w(/~l) -~- w(,~2) + w(/ .3) (5) 

Classical theories of rubber elasticity belong to the VL 
class as does the Gaylord-Douglas model 8'9. Experi- 
mental evidence supports the ability to separate W(2,) 
into a single function of the principal stretches to a very 
good approximation 25-2s. 

* The melt entanglement molecular weight M e is defined by the relation 
G~ =pRT/Me so that the entanglement modulus in the localization 
model equals 

Ge = 7(pRT/Mc) + pRT/Mc (4) 

Our considerations are, of course, restricted to crosslink densities above 
the gelation threshold (v>~v*). The only free parameter in our 
comparisons is 7 which is predicted to be the slope of a contribution 
to G¢ which is linear in the crosslink density 
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The ability to represent the elastic free energy as 
separable in the stretches provides a means of obtaining 
the mechanical response of the elastomer in all 
deformation geometries from a series of experiments in 
a limited number of geometries, e.g. tensile or 
compressive responses can be described from the strain 
energy function derivatives determined in torsion. For  
example the true stress response to a uniaxial deformation 
is written as: 

ol 1 - a n  = 2w'(2) - 2-1/2w'(4-1/2) (6) 

where w'(4) = 0w/02 is the derivative of the VL function. 
Kearsley and Zapas 29 have shown how to obtain the 

derivative of the VL function w'(2) - w'(1)/2 from torsion 
and normal force measurements on cylinders of dry 
rubber. Here we simply write their result that: 

0A(~) 
- w'(4) - w'(1)/4 = (2/),)(42 - 1)(W1 + W2/42) 

02 
(7) 

where the W i represent the derivatives of the strain energy 
density function with respect to the ith invariant of the 
deformation tensor. Both W t and W2 can be obtained 
from the torque and normal force measurements at 
different angular deformations using the Penn and 
Kearsley scaling approach 3°. We further note that w'(1) 
can be set to zero without loss of generality. We do this 
here for purposes of analysis. 

In previous work 2-5 we obtained values of 0A/04 in 
equation (7) for a series of dicumyl peroxide crosslinked 
natural rubbers and some typical results are shown in 
Figure I. In order to compare the localization model 8'9 
with such results we observe that the first derivative of 
the elastic free energy function of this model is given by 
the remarkably simple expression: 

0A(4) 
- G¢(2 - 1/2) + Ge(1 - -  l /k) (8) 

02 

We then fitted the data of reference 2 (Figure 1) to 
equation (8) using a non-linear least squares algorithm 31 
assuming that the value of G~ was that given by the 
classical theories with C o = 0.5 (see Introduction), 0.25 
and 1. The data were also fitted allowing both G¢ and 
Ge to be floating parameters. The results of these 
procedures are described below. 

RESULTS 

Comparison of the Gaylord--Douglas localization model 
with torsional data for dry networks 

In the previous study 2-s we used the Gay lo rd -  
Douglas s'9 model as a curve fitting device to the VL 1 
functions determined from the torsional data for dicumyl 
peroxide crosslinked natural rubbers. As seen in Figure 
1 the agreement between a general fit to the data and 
the data themselves is very good. This alone is very 
impressive because there are only two parameters in the 
Gaylord-Douglas  model. The values for G~ and G~ 
obtained from these general fits are presented in Table I. 

Of more interest than simply carrying out curve fitting 
of the model was the fixing of the classical term parameter 
to a reasonable estimate of its theoretical value and 
consideration of two questions: can the data still be 
represented by the localization model, now with just one 
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T a b l e  l Values of G~ and G~ for the Gay lo rd -Douglas  8'9 model 
determined from curve fitting of equation (8) to natural  rubber torsional 
data 2 5 

Rubber sample v (mol cm -3) Go (Pa)" G~ (Pa)" 

APHR1 2.09 x 10 - s  0 6.43 × 105 
APHR2 5.22 x 10 -5 0 8.46 x 105 
APHR3 8.35 × i 0 - s  2.52 × 105 7.98 × 105 
APHR5 1.46 x 10 -4  3.58 x l0 s 1.32 × 106 
APHR7.5 2.24 x 10 4 7.38 × 105 1.79 × 106 
APHR10 3.03 × 10 4 4.20 x l0 s 2.23 × 106 
APHR15 4.59 x 10 4 2.33 × 106 5.18 × 103 

"Equation (8) is ~A/?A~ = G ~ ( 2 - 1 / 2 ) +  G~()~- 1); G¢ is nominally the 
'classical' contribution to rubber elasticity and was used as a fitting 
parameter,  which implies that the Co discussed in the text was allowed 
to float; G~ is the confinement contribution to the network elasticity 

T a b l e  2 Molecular masses of natural  rubber prepolymer (after milling) 
and molecular mass  between crosslinks, M~, of samples after 
crosslinking with dicumyl peroxide 
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adjustable parameter? If so, how does the adjustable 
parameter (Ge) vary with the network crosslink density, 
recalling from equation (3) that it should vary linearly 
and be equal to the rubbery plateau value at zero 
crosslink density. 

The value of the classical term, as discussed earlier, is 
uncertain both because of disagreement from a 
theoretical point of view and due to experimental 
uncertainty as to the actual crosslink density, network 
imperfections, etc. For  the purposes of this work we have 
assumed that each dicumyl peroxide molecule decom- 
poses to form one tetrafunctional crosslink. This is the 
basis for the crosslink densities reported in Table 2. 
Furthermore, we have estimated from these values of 
crosslink density values for G c which are reasonable based 
on different values of Co which correspond to a theoretical 
upper bound (Co--1),  a theoretical lower bound 
(Co = 0.5) and finally a very low estimate which might 
take into account network imperfections (Co =0.25). 
From a subjective standpoint we believe that a value 
slightly less than 0.5 should provide the most 'reasonable' 
estimate. Figures 2-4 show results from fitting with 
C o = 1, 0.5 and 0.25, respectively. In all of these results 
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Figure 3 (a)-(c) Same as Figure 1 but procedure fixed Co = 0.5. See 
also Table 3 

Figure 4 (a)-(c) Same as Figure I but procedure fixed C O = 0.25. See 
also Table 3 
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Table 3 Values of G~ obtained for the Gaylord-Douglas 8'9 model determined from curve fitting of equation (8) to natural rubber torsional data 

C o = 0.5 Co = 0.25 C O = 1 
Rubber v 
sample (tool cm -a) Gc (Pa) Ge (Pa) Gc (Pa) Ge (Pa) Gc (Pa) Ge (Pa) 

APHR1 2.09 x 10 -5 2.58 x 104 5.94 x 105 1.29 × 105 6.18 x 105 5.16 × 104 5.45 x 105 

APHR2 5,22 × 10 5 6,44 x 104 7.24 × 105 3.22 x 104 7.85 × 105 1.29 × 105 6.03 × 105 

APHR3 8,35 × 10 -5 1.03 x 105 1.09 x 106 5.15 x 104 1.19 × 106 2,06 × 105 8.89 × 105 

APHR5 1,46 X 10 -4 1,80 x 105 1.67 X 106 9.00 x 104 1.85 x 106 3.60 x 105 1.32 x 106 

APHR7.5 2,24 × 10 -4 2,76 x 105 2.71 × 106 1,38 × 105 2.98 × 106 5,52 x 105 2.16 × 106 

APHR10 3,03 x 10 -4 3,74 × 105 2.33 x 106 1,87 x 105 2.70 × 106 7.48 x 105 1.58 × 106 

APHR15 4,59 x 10 4 5.66 x 105 3.58 x 106 2,83 x 105 4.15 x 106 1.13 × 106 2.45 × 106 

5 .0E6 
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0,0 
0.0 

zx 

i J i i I i i i i 
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V ( m o l e / c r n .  3) 

Figure 5 Confinement modulus Ge versus crosslink density v for 
dicumyl peroxide crosslinked natural rubber. Data groups correspond 
to different curve fitting procedures. (©) C O floating; (&) C o = 1.0; 
( 0 )  Co = 0.5; (A) Co = 0.25. Lines represent linear regressions in the 
data. See Table 4 

we see that, while the fits are reasonable, there are cases 
in which they are not as good as obtained upon letting 
both Q (or Co) and Q float. (All of the curve fits were 
included here for completeness and in order to show that 
the fits for the different constraining conditions are not 
equally good, e.g. cf. Figures 2c, 3e and 4c. It is unclear 
at this juncture whether this is significant.) 

In Table 3 we present the values of G, obtained from 
the curve fits of Figures 2-4 at the different crosslink 
densities. As can be seen Go increases with increasing 
crosslink density. Furthermore, the values of G~ are 
generally larger than G~ indicating that the confinement 
contribution is the dominant contribution to the network 
elasticity (Table 1). In Figure 5 we see that G e is well 
represented as a linear function of crosslink density for 
all four choices of Co (1, 0.5, 0.25 and floating). Notably, 
the intercept of the data at zero crosslink density in all 
cases results in an estimate of G* which is near to the 
actual reported value 32 of the rubbery plateau modulus 
for natural rubber s of 0.75 x 105 Pa. This is best seen in 
Table 4 where we report the values from a linear 
regression on the crosslink density dependence of the 
confinement parameter G, for each of the values of Co 
examined. 

Table 4 Results from linear least squares determination of the 
crosslink density dependence of the confinement modulus Ge in the 
Gaylord-Douglas localization model (G e = A + By) 

Curve fitting A = G~ B = 7kT 
procedure (Pa) (Pa cm 3 mol ~) 

C o floating" 4.73 x 105 5.77 x 109 
C O = 0.5 5.56 x 105 6.83 x 109 
C O = 0.25 5.55 x 105 8.06 x 109 
C O = 1 5.62 x l0 s 4,36 x 109 

" Value at v =4.59 x 10 -4 mol cm -3 was not included 

DISCUSSION 

In previous papers 2-4 we reported on torque and normal 
force measurements on dicumyl peroxide crosslinked 
natural rubber and obtained the first derivative of the 
(elastic) strain energy density function. Classical 
arguments by Frenkel 6, Flory and Rehner 7 were then 
followed to predict the elastic properties of swollen 
rubbers from the dry state and the measured degree of 
swelling. A comparison of the dry state with a molecular 
model was strictly avoided since our intention was to 
check the hypothesis of FFR rather than the adequacy 
of any particular modular model of rubber elasticity. 
Here we compared our previously obtained dry state data 
with the localization model of Gaylord and Douglas 8'9. 
This model indicates a substantial non-classical contri- 
bution to the elastic free-energy density which is due to 
the entanglement interaction and the finite volume of the 
network chains. 

Despite the uncertainty in the estimate of the classical 
contribution to the rubber elasticity arising from 
experimental and theoretical uncertainties the compar- 
ison between theory and our previously obtained 
torsional data yields good agreement. The fitted 
parameters follow the predictions of the theory when 
reasonable estimates of the classical rubber elasticity 
contribution are made. The confinement modulus is 
found to vary linearly with crosslink density and 
extrapolates to the melt plateau modulus in the limit of 
zero crosslinking. A previous comparison of the 
localization model to uniaxial data also led to good 
agreement between theory and experiment 8. This former 
study, however, did not explore the effects of crosslink 
density on the observed moduli G¢ and G¢. 

Our testing of the localization model of rubber 
elasticity is part of a longer term goal of characterizing 
the thermodynamics of polymer networks including 
mechanical and swelling behaviour. The classical rubber 
elasticity models are clearly inadequate to describe dry 
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state mechanical  da ta  much  less describe the swelling of 
networks.  The local izat ion model  gives a definite 
indica t ion  of which factors are impor t an t  in de termining 
the elastic free-energy of a swelling network.  The 
general izat ion of the model  is not  trivial, however,  
because swelling does not  correspond to cons tan t  volume 
deformat ion  and  new cont r ibu t ions  to the rubber  
elasticity are possible. (The issue of the controversial  
logari thmic term has to be addressed.) Pre l iminary  
calculat ions indicate that  the non-classical  conf inement  
con t r ibu t ion  to rubber  elasticity has a significant 
influence on the swelling of rubbers.  We in tend  to check 
these predictions in the near  future. 
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